If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4q^2+20q-11=0
a = 4; b = 20; c = -11;
Δ = b2-4ac
Δ = 202-4·4·(-11)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-24}{2*4}=\frac{-44}{8} =-5+1/2 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+24}{2*4}=\frac{4}{8} =1/2 $
| -6/3*9/9=x/27 | | -2(m+-6)=8 | | 3/5w+1/5w+10=4 | | 3(5-(-2x-3))=48x+87 | | 3x+18=93* | | 6x+35=8+14 | | 5p–14=8p+4 | | 8x-4-5x-2-3x=10 | | 10=4x-5(x-2) | | 5-2x+6=-5 | | 2x+5-6(x+1)=3x+5 | | 6=k-7k | | x2–16=65 | | 9/15(6m-30)=10/15m+30 | | x^2–16=65 | | 15x5=5+10x | | 5n=12n+24 | | 5a²-36a=32 | | 0.20(y-9)+0.18y=0.06y-1.4 | | P+5+5p=23 | | 5.5z-5.5=-3.5+4.5z | | 4y=6= | | 8.5-2x=5x-6.2 | | 3u^2+47u-16=0 | | 4x=25–x^2 | | f/5-20=-22 | | 12x+4-3x=31 | | -0.10(80)+0.60x=0.05(x-6) | | X+2=3x+7 | | 8(x-9)-10=18x-122 | | 12x+4-3x=30 | | 36m^2-1=0 |